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Abstract. Wavelet packet analysis was used to measure the global scaling behaviour of
homogeneous fractal signals from the slope of decay for discrete wavelet coefficients belonging
to the adapted wavelet best basis. A new scaling function for the size distribution correlation
between wavelet coefficient energy magnitude and position in a sorted vector listing is described
in terms of a power law to estimate the Hurst exponent. Profile irregularity and long-range
correlations in self-affine systems can be identified and indexed with the Hurst exponent, and
synthetic one-dimensional fractional Brownian motion (fBm) type profiles are used to illustrate
and test the proposed wavelet packet expansion. We also demonstrate an initial application to a
biological problem concerning the spatial distribution of local enzyme concentration in fungal
colonies which can be modelled as a self-affine trace or an ‘enzyme walk’. The robustness of
the wavelet approach applied to this stochastic system is presented, and comparison is made
between the wavelet packet method and the root-mean-square roughness and second-moment
approaches for both examples. The wavelet packet method to estimate the global Hurst exponent
appears to have similar accuracy compared with other methods, but its main advantage is the
extensive choice of available analysing wavelet filter functions for characterizing periodic and
oscillatory signals.

1. Introduction

The wavelet transform is a mathematical technique which is useful for numerical
analysis and manipulation of both one- and two-dimensional signal sets. The transform
operates like a microscope for detail examination by partitioning the signal into different
frequency components mapped to coefficients having different energies [1]. The wavelet
decomposition therefore provides information about how energy depends on position and
scale. The resolution scale can be changed to focus on local features by applying a set
of specially constructed ‘filters’ which transform (dilate and translate) the input signal in
an iterative scheme. This approach is not unlike traditional Fourier series expansions of
functions using sines, cosines or exponentials, although a linear combination of wavelet
functions is used to represent the signal functionf (i). Wavelets attempt to avoid inherent
difficulties with the spectral approach such as lack of convergence, and offer a class of
flexible functions with prescribed smoothness that are well localized with respect to position
and frequency.
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Previously, the wavelet transform has been used for the characterization of fractal [2]
and multifractal signals [3, 4], turbulence data [5], branching of diffusion-limited aggreg-
ates [6, 7] and spatiotemporal time series analysis [8]. This paper presents a new scaling
relation to derive the global Hurst ‘roughness’ exponent from theslope of decayfor the
size distribution of coefficient energiescalculated from wavelet packet analysis,WPA [9–
11]. It should be emphasized that the wavelet transform is thought to provide a statistical–
mechanical description [7] of the construction process for feature-to-coefficient mapping into
the best basis which represents the collective mapping with lowest information cost [12].
Here we compareWPA with several alternative measurement methods for characterizing
global statistical properties of1D self-affine signal profiles.

The organization of this paper is as follows. Section 1.1 defines the scope of this
investigation while section 1.2 reviews the importance of the homogeneous global self-
affine exponent. Section 2 presents the biological background and rationale for applying
WPA to examine spatially non-uniform enzyme patterns in biological systems. Section 3
details the mechanics of applyingWPA to characterize self-affine signals. Section 4 details
how to practically expand synthetic and stochastic self-affine signals to quantify the Hurst
exponent. Section 5 defines the power-law behaviour for the wavelet packet best basis, while
section 6 reviews the issue of finite-size effects which impact on the accurate description of
short signals. The results forWPA compared against three alternative methods are presented
and discussed in sections 7 and 8. The methods for enzyme detection and fungal growth
are provided in appendix A.

1.1. Scope of the investigation

The accuracy and reliability of four different methods to characterize the profile irregularity
of short1D signals was examined by testing each method against synthetic self-affine profiles
which have a prescribed Hurst exponent. We do not consider multifractal signals, nor do
we examine ‘local’ scaling properties at intermediate length scales. The purpose of this
paper is to introduceWPA as an additional method to quantify the homogeneous or global
‘monofractal’ [13] behaviour of self-affine1D signals by estimating the Hurst roughness
exponent. We comment briefly in the discussion on another multifractal approach, in
particular, the wavelet transform modulus-maxima (e.g. [4, 5]) and how theWPA method
presented here could be improved to estimate local scaling trends. Details for calculating
the localH exponent to estimate possible multifractal behaviour of self-affine1D signals
usingWPA is given in appendix B.

We also demonstrate the potential of this technique by quantifying the self-affine
irregularity of gray-scale elevation line profiles which had been extracted from digital images
of spatially distributed data. We point out that all stochastic1D signals examined here were
obtained from2D images captured using image analysis, and the synthetic fBm-type profiles
were of lengthL = 512. Short signals whereL 6 512 were chosen in order to more
closely mimic those which can be experimentally extracted using image analysis (i.e. with a
512× 512 pixel resolution framegrabber andCCD camera). We briefly review other studies
which have investigated the self-affine properties of short signals(L < 1024) in section 6.

1.2. Importance of the self-affine exponent

Statistical properties of selected one-dimensional profiles were examined to characterize
how the point-to-point signal distribution scales and fills the available space. Self-affine
fractal objects are invariant under an affine transformation [14]. The stochastic surface
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roughness was investigated with line profiles extracted from the2D plane where thex andy

locations are positionally defined but the vertical axis (orz-plane elevation) was a fluctuating
quantity. Magnified portions of such signals do not scale equally in all directions (x, y

andz) resulting in scalar anisotropy. This violates the property of true self-similarity where
finer feature details, under a magnification scale transform, should occur isotropically in all
directions. The magnification factor used to rescale self-affine functions therefore depends
on the direction.

Sample profiles of fractional Brownian motion (fBm) are often used to illustrate
statistical scaling properties of random walks. A fBm,VH(i) models the scaling of a
single variable,i used here to index position. The Hurst exponent,H measures the
fluctuation for the increments of fBm,1i which are derived by considering the scaling
function1VH(1i) = VH(i2) − VH(i1). This has a Gaussian distribution with variance [15]
averaged over many realizations ofVH(i):

〈1VH(1i)〉 ∝ 1i2H . (1)

In one dimension, it has been shown [15] that equation (1) is equivalent to examining how
the average width orheight difference1h(x) of the functionVH(i) scales according toH
over different linear subregions of lengthx:

1h(x) ∼ xH . (2)

An obvious property which can be examined for each fBm-type profile walk sequence is
the degree of correlation between adjacent regions. SinceH ∈ (0, 1) and 0< H < 1, three
types of behaviour can be identified. Short-range antipersistent correlations(H < 0.5)

are typically characterized by peaks followed by troughs in an alternate sequence; random
fluctuations (white noiseH = 1

2) are uncorrelated, while long-range correlations(H > 0.5)

are persistent and display some form of ‘memory’.

2. Biological background

We examine several numerical methods which estimate the global Hurst exponent to index
the nearest neighbour statistical distribution of enzyme concentration in spatially extended
fungal colonies. Details of colony growth and enzyme detection are given in appendix A.
Fungal colonies develop from locally interacting cell systems which express exo-enzymes,
such as laccase to break down substrate constituents. Exo-enzyme secretion is known to
occur principally via the hyphal tips, and different substrate compositions (concentration
of the carbon source, or the presence of paramorphogens which influence branching)
induce the formation of macroscopic patterns of enzyme activity with very different spatial
scales. For example compare figure 1(b) with 1(h). These are examples of a reacting
chemical system [16] where signal transmission from the extracellular environment effects
intracellular biochemical events. Diffusive transport in turn gives rise to macroscopic
aggregating bands of enzyme activity (figure 1(e) and 1(h)). This study therefore introduces
a possible experimental approach to the question of morphogenetic regulation of cell growth
and differentiation and how this is related to biochemical synthesizing systems and their
spatial organization. This biological example belongs to a class of more general chemical
feedback problems which generate spatial patterns via chemical diffusion, oscillations,
travelling waves or multistability [16, 17].

TheWPA method is used here to characterize correlation properties in the spatial ordering
of biochemical concentration, visualized as one-dimensional fBm-type profiles, termed
‘enzyme walks’ in these biological systems. TheWPA method extends the experimental
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Figure 1. (a) Photograph of a single colony ofPycnoporus cinnabarinusgrown from a single
spore on malt extract agar at 37◦C for 22 hours; scale: bar≡ 100 µm. (b) Colony of P.
cinnabarinusat day 3 grown from a central plug inoculum containing many spores. Orange stain
indicates laccase enzyme detected with 2, 6-dimethoxyphenol reagent after 120 min; membrane
diameter= 47 mm. (c) Single digital line profile extracted from edge to edge across the whole
colony—ALL ; membrane diameter= 47 mm. (d) Single digital line profile extracted from the
centre-point to the edge—HALF. Scale bar= 5 mm. (e) Pseudo-colour representation of (b)
and (c) showing the double-banding pattern characteristic of laccase enzyme expression in this
fungus. The arrow indicates the centre-point inoculum, growth is radially symmetric outwards
from here over time; scale bar= 10 mm. (f ) Enlarged view of a single line profile indicating
gray-scale amplitude (intensity signal) fluctuation forALL ; scale bar= 10 mm. (g) Gray-scale
amplitude fluctuation for a single line extracted fromHALF; scale bar= 5 mm. (h) The influence
of nutrient substrate concentration on the double band pattern of laccase enzyme at day 3 for
P. cinnabarinusgrown on ground wood(0.2%) + agar(2%) + 1000 ppm of the industrial dye,
Remazol Brilliant Blue R. Note the spatial delineation of banding into two discrete regions and
compare with (b). This image was recorded 120 minutes after reagent addition. Membrane
diameter= 47 mm.

techniques previously used to detail the acid phosphatase enzyme system [18, 19]. Here,
deposition of the reagent, 2, 6-dimethoxyphenol [20] was used to reveal sites of the
extracellular enzyme, laccase (benzenediol:oxygen oxidoreductase, E.C.1.10.3.2)—which
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formed a rough interface with distinct concentration regions of enzyme activity. We analyse
the pattern of spatial distribution of laccase concentration, and measure its roughness
exponent,H using all four methods. Self-affine biosequences for acid phosphatase had
previously been analysed by an alternative scaling method (fast Fourier transform [18]) to
empirically describe cellular information processing with respect to enzymatic complexity
and percolation threshold phenomena [19] occurring in biochemical systems.

Digital line profiles were extracted using computerized image analysis to investigate
macroscopic biological pattern formations which develop fromin vivo enzyme expression
of whole fungal colonies [18, 19]. Colony growth is radially symmetric outwards from
a central plug inoculum, and occurs by repeated branching of vegetative filaments called
hyphae shown in figure 1(a). The structural development of morphology during early colony
growth is very similar in appearance to the off-lattice Eden cluster growth network [21]. In
many fungi, laccase enzyme is involved with catabolic degradation for active maintenance
of nutrition [22]. Typically, a series of linear line profile functions are obtainedf (z)i ,
i = 1, 2, . . . , L, which can be described with a dual coordinate system indexing positioni

of lengthL along thex-axis versus enzyme concentration measured as gray-scaleintensity
amplitude (z-axis) in hue, saturation, intensity(HSI) colour signal space. The global
quantitative description of the irregularity (or ‘jaggedness’) observed in these profiles was
solved by estimating the self-affine fractal dimension with the Hurst exponent [18], and is
similar to the numerical methods used to quantify ‘DNA walks’ [23] and heartbeat interval
fluctuations [24]. This experimental approach to describe scale invariance in spatially
extended systems has popularly been termed a ‘statistical–mechanical approach’ [24], in
that micro-level scaling correlations are thought to impact on macro-level structural patterns.
This viewpoint shares common features with adaptive walk models on fitness landscapes
[25, 19] and the emergence of self-organized criticality [26] to explain a possible mechanism
underlying such patterns of fluctuation activity.

3. Wavelet packet transform analysis

3.1. Mechanics of applying wavelet packet transform to self-affine signals

The wavelet transform partitions a signal with respect to spatial frequency [10]. This is
achieved by filtering the signal with a pair of dyadic orthogonal filters termed a quadrature
mirror filter (QMF) which operates according to sub-band coding [27]. This is a multireso-
lution scheme [10, 28] which separates the signal into coarse and fine-multiresolution com-
ponents using a low-pass filter to obtain successively blurred versions of the input signal,
and a high-pass filter to select the high-frequency component. Figure 2 illustrates the ‘pair-
family’ concept of wavelet filter functions. For the Haar (d2) wavelet, the low-pass filter,
often notationally defined as the ‘father’ waveletφ is the scaling function and integrates to
one, while the ‘mother’ wavelet9 integrates to zero. Other filter properties for higher-order
wavelets are given in the figure caption. Linear combinations of wavelet functions which
oscillate about zero can then be used to represent or approximate1D signals. Wavelets are
especially useful for examining signals which have sharp jumps and which are more diffi-
cult to resolve using Fourier series approximation methods. Four orthogonal wavelet filter
functions are shown in figure 2 which differ in their degree of oscillation and regularity.
We explore the impact that different filter architectures have on achieving successful signal
approximation, and how this relates to ‘smoothness’ detection in our goal to estimate the
global Hurst exponent. The Haar wavelet (d2) is a square wave with compact support and is
symmetric; however, it is not continuous and has poor position–frequency localization [1].
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Figure 2. Some examples of orthonormal wavelet bases. For each ‘mother’ filter9 the family
9m,n(i) = 2−m/29b(2−mi − n) provides an orthonormal basis. This figure plots the associated
‘father’ φ scaling function for each9; left: father wavelets; right: mother wavelets. The Haar
wavelet has support length= 1, no vanishing moments, and Hölder exponent= 0. The d4
wavelet has support length= 3, 1 vanishing moment for9 and a Ḧolder exponent= 0.55.
The d6 wavelet has support length= 5, 2 vanishing moments for9 and a Ḧolder exponent
= 1.09. The d8 wavelet has support length= 7, 3 vanishing moments for9 and a Ḧolder
exponent= 1.62. Smooth wavelets have wide support and a higher number of vanishing
moments allowing the wavelet better representation of higher-degree polynomial signals. The
Hölder exponent is another measure of smoothness.

Notably different wavelet packet functionsWb(i) are generated by scaling and translating
one of theQMF filters. Each function has a frequencyb which describes the number of
oscillations or zero crossings the wavelet packet makes. For the Haar basis, the wavelet
does not oscillate through zero(b = 0) so φ(i) ≡ W0(i) but the mother wavelet has one
zero crossing(b = 1) so9(i) ≡ W1(i). WPA operates by approximating a signal with scaled
and translated wavelet packet functionsWm,b,n which are generated fromWb following:

Wm,b,n(i) = 2−m/2Wb(2
−mi − n) . (3)

The notation which characterizes each wavelet packetWm,b,n reflects thescale 2m and
location 2mn. The resolution level changes withm and the translation operates throughn.
A signal f (i) can then be represented by the sum of orthogonal wavelet packet functions
Wm,b,n(i) following

f (i) ≈
∑
m

∑
b

∑
n

wm,b,nWm,b,n(i) . (4)

The wavelet packet coefficients (in final form identified with the notationCm
n ) are produced
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from this integral:

Cm
n ≡ wm,b,n ≈

∫
Wm,b,n(i)f (i) di . (5)

It should be emphasized that equation (4) allowsmany possible combinations of wavelet
packet functions to be selected in order to optimally characterize the signal. This contrasts
with the more general wavelet transform (DWT) [29–32] used to analyse fractal signals
where the wavelet functions are fixed at discrete resolution levels.

3.2. The wavelet packet transform and adapted waveform analysis for1D signals

The objective ofWPA is to create a binary tree decomposition of the signal into a set
of energy levels, called ‘octave’ windows [9] where the frequency domain has been
divided logarithmically [33]. During the segmentation, each scale retains the dominant
signal features while minimizing the wavelet coefficient amplitude of their representation.
Because the wavelet packet coefficients contain information about the energy magnitude
contribution for each discrete feature in terms of scale, frequency and position, this
provides a robust method for feature and singularity detection. It is notable that
determination of the singularity spectrum of fractal functions by wavelet analysis provides
a microscopic statistical description of the scaling behaviour in terms of thermodynamic
energy functions [7]. Convolving the signal (subsampling) at each iteration by keeping only
every second point makes the expansion into the wavelet packet best basis finite [10, 34].
Each transformation into the next level is an energy conservation process, and the total
energy is considered to be the sum of all the individual energies mapping out the feature
fluctuations. The input signal can also be rebuilt via upsampling and summing combinations
of coefficients.

By choosing a set of mother and father wavelet functions (aQMF) with known oscillation
index, one can decompose an input signal to create a wavelet packet table. Figure 3
shows the wavelet packet table created using the d4 wavelet function for an input fBm-
type signal withL = 512 and theoreticalH = 0.2 which had been created with the
midpoint displacement method [35]. Each resolution level,m has 512 coefficients and is
subdivided into blocks which contain the wavelet packet coefficients with an oscillation
index b = 0, 1, . . . 2m − 1. Level 0 reproduces the input, and resolution levels 1 to 8 are
plotted in descending order. For each level, the leftmost block corresponds to an oscillation
index b = 0 and contains the low-frequency approximation coefficients. The rightmost
block (or blocks) have an oscillation indexb = 2m − 1 and contain the high-frequency,
detail coefficients. Notably, the wavelet packet table is a redundant approximation of the
signal and for an input signal ofL = 512 the table contains(M +1)×512 coefficients. For
a signal ofL = 512,M is equivalent to the total number of resolution scales,m—which in
this case is eight. We can now select a subset of coefficients from the wavelet packet table
to create a unique, orthogonal wavelet packet transform.

To select an optimal transform of bases from the wavelet packet table, thebest basis
algorithm of Coifman and Wickerhauser [12] was used. This algorithm isadaptivein that
it minimizes a cost function by finding theminimum entropyfor coefficients [10] which
belong to the best basis. To emphasize the superiority of the wavelet packet transform (WPT)
best basis method which is fundamental toWPA for signal approximation compared with the
more common discrete wavelet transform (DWT), we decompose the input signal used in
figure 3 with the d4 wavelet (figure 4). On the left, theDWT provides good decomposition
of the coarse signal features but theWPT on the right results in superior decomposition
and localization of fine, detail signal features. For theDWT, each detail resolution level
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Figure 3. Wavelet packet table for a sample fBm-type1D signal withH = 0.2 andL = 512,
created by midpoint displacement. TheQMF filter was the d4 wavelet. Level 0 is equivalent to
the original signal and resolution level 1 through 8 are plotted below. For each level, the leftmost
block has oscillation indexb = 0 and is the ‘approximation’ or blurred signal created from the
low-pass fatherφ wavelet which convolves the signal by keeping only every second point. The
rightmost block has oscillation indexb = 2m − 1 and contains the high-frequency coefficients
created from the high-pass9 mother wavelet. The wavelet packet coefficientswm,b,n are plotted
as a fluctuating vertical line in the rightmost blocks. Coefficient index position extends from 0
to 512 for level 0 on thex-axis.

Figure 4. Comparison of wavelet decomposition with wavelet packet decomposition for a fBm-
type signal withH = 0.2; left: discrete wavelet transform decomposition (DWT); right: best
basis wavelet packet decomposition (WPA) with the d4 wavelet. TheDWT identifies the coarse
features but the wavelet packet transform with the best basis coefficients provides a more refined
decomposition of the high-frequency, fine-scale features.
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is indexed by D and the smooth signal by S. The greater number of best basis function
blocks for the best basis decomposition results in superior detection of local scaling trends.
We then combine these coefficients into a single listing, and estimate the power-law decay
of sorted coefficient energies to determine the homogeneous Hurst exponent (following the
protocol described in section 4.1 and section 5).

4. Computation of the global Hurst exponent usingWPA

4.1. Application to short synthetic1D profiles

Synthetic fBm-type, one-dimensional profiles were created atL = 512 pixel length using the
midpoint displacement algorithm [35]. The method of wavelet packet analysis [9–11], was
used for wavelet analysis of fifteen test profiles each with predictedH = 0.3, 0.5 and 0.7,
respectively. An example profile forH = 0.3 is shown in figure 5(a). In addition,H was
estimated using the root-mean-square roughness (RMS versusL) method [35] and growth
of the second moment, and growth of the local second moment [36]. The Daubechies two
(Haar), four, six and eight (d2–d8) compactly supported wavelet functions [9] shown in
figure 2 were used to expand the source signal into a binary tree consisting of multiple
resolution levels. These filters were also applied to fifteen ‘enzyme walk’ profiles at two
magnifications to assess the utility of higher-order wavelet functions on accuracy. Each
successive level of the expansion represents the signal using a greater number of nodes but
a decreasing number of coefficients. The best basis was selected for reconstruction using the
Shannon entropy criterion [9–11]. Reconstruction in this way encodes most of the important
signal information onto the coherent subset and leaves the degenerate portion of the signal

Figure 5. Wavelet-based analysis of a sample fBm-type profile(L = 512). Graph of
deterministic function with (a) H = 0.3; RMS versusL, H = 0.409 ± 0.014; H (second
moment)= 0.261, r2 = 0.954; H (local second moment)= 0.330. (b) Wavelet basis power-
law spectrum ofNr(C

m
n > N) versusN computed with the d6 wavelet filter, the slope of line

δ = −1.325, r2 = 0.786; predictedH = 0.325. Finite-size effects contribute to the deviation
from linearity, producing a ‘tail’ for the distribution, however these coefficients are not rejected
since they contribute non-negligible energy magnitude(E > 0) to the size distribution.
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(i.e. noise) mapped onto the residual subset. The best basis wavelet coefficients were used
for synthesis of the reconstructed (coherent) signal via upsampling and summing of both
the approximate and detail coefficients generated from application ofφ and9, respectively.
Another best basis, called the wavelet best basis can be extracted from the coherent signal
and was used to derive the Hurst exponent. Thewavelet best basis coefficient subset, Cm

n

of the reconstructed signal after expansion (dilation by a scale termm, translation by a
frequency termn) [11] was retained as data vector 1 and sorted into decreasing order of
magnitude:

{Cm
n : C1 > C2 > · · · > Ccut-off > 0} . (6)

A second vector listing corresponding to thecoefficient index positionN was similarly
constructed whereN is the set of all positive integers:

{N1, N2, . . . , Ncut-off} . (7)

A log–log plot of this relationship was constructed and a least-squares linear regression was
fitted to determine the slope,δ, which indexed the sequential variation in scaling amplitude.
An example is shown in figure 5(a) and (b). The mathematical rationale supporting this
statistical approach is discussed in section 5. This format for wavelet data correlation allows
for empirical estimation of the energy decay rate which is associated with the wavelet
coefficient series for the different signals and is similar in operation to a Fourier transform
spectrum of 1− f type signals [28].

4.2. Application to short1D ‘enzyme walk’ profiles

Biosequence profiles of laccase enzyme activity were extracted withL = 256 from three-
day-old surface-grown colonies of the fungusPycnoporus cinnabarinus, using a previously
developed transmitted light imaging technique [18] and enzyme detection protocol [37]. The
framegrabber hardware had a spatial pixel resolution of 512× 512 which was equivalent to
a screen pixel resolution of 384 (x-axis) versus 512 (y-axis) implemented with a rectangular
pixel array. Digital1D profiles can have a maximum length of 512 or 384 depending on
image orientation. Further details of the experimental method are provided in appendix A.
Sample ‘enzyme walk’ profiles are shown in figure 6 in section 7.

5. Power-law scaling

The observed scaling between discretecoefficient energy magnitudeandposition is modelled
in a sorted listing using the Korcak number-size frequency distribution power law [38]. This
shares a similar mathematical formalism to the Pareto distribution [39] and the Mandelbrot–
Zipf generalization [40, 41], where one considers the numberNr of objects of size [A] greater
than some minimum size [a] and relates this function to a frequency distribution. Rank and
frequency can be introduced by making number analogous with probability [42] where the
overall power law can be expressed by

Nr(A > a) ∝ ka−δ (8)

where k is a constant andδ is the slope exponent. Since we are considering a wavelet
packet expansion which returns combinations of approximation and detail coefficients that
minimize the entropy of their expansion (i.e. following best basis selection), this leads to a
power-law relationship between number,Nr of coefficientsCm

n having a particular energy
size magnitude, and index position,N :

Nr(C
m
n > N) ∝ kN−δ ≈ kN−(1+H) . (9)



Wavelet packet computation of the Hurst exponent 2519

Figure 6. A single ‘enzyme walk’ biosequence fluctuation of laccase across the whole plate
(ALL ) for (a). The line profile(L = 256) was placed across the radially symmetric colony
(from edge to edge), and passed through the origin centre-point inoculum (at position∼130).
Results for each wavelet are: d2 wavelet:H = 0.442, r2 = 0.390; d4 wavelet:H = 0.349,
r2 = 0.813; d6 wavelet:H = 0.376, r2 = 0.818; d8 wavelet:H = 0.356, r2 = 0.670; RMS

versusL, H = 0.423± 0.031; H (second moment)= 0.293, r2 = 0.988; H (local second
moment)= 0.280. (b) Frequency partitioning for the wavelet packet transform ofALL shown in
(a) with the d4 wavelet. The best basis ‘entropy’ algorithm was used to compute the best basis
from the wavelet packet table and these coefficient blocks are shown in black. By doubling the
magnification and taking a line profile from the centre-point to the right-hand edge, sensitivity
to resolution scale changes could be examined. A single ‘enzyme walk’ is shown forHALF. (c)
Results for each wavelet are: d2 wavelet;H = 0.400, r2 = 0.375; d4 wavelet:H = 0.455,
r2 = 0.510; d6 wavelet:H = 0.370, r2 = 0.845; d8 wavelet:H = 0.350, r2 = 0.817; RMS

versusL, H = 0.350± 0.026; H (second moment)= 0.164, r2 = 0.944; H (local second
moment)= 0.236. (d) Frequency partitioning for the wavelet packet transform ofHALF shown
in (c) with the d4 wavelet.

The Hurst exponent parameterH is bounded by 0< H < 1 for a graph of the function
with a least-squares linear regression fit through the data points. Since the slope exponent
in (8) and (9) is equivalent to−(1 + H), the Hurst exponent may be determined from the
rearrangement of terms:

(δ) + 1 = |H | or H = |(δ + 1)| . (10)
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Figure 6. (Continued.)

By sorting the coefficientsCm
n into decreasing order of discrete energyε:

C1 > C2 > · · · > CE > 0 (11)

one can include best basis coefficients up to a particular energy valueE which is the cut-off
in equations (6) and (7). Therefore all included coefficients having discrete energiesε will
be greater than or equal toE. It was found that for the d2 wavelet, the cut-off for smallest
E was to reject coefficients having discrete energiesε . 0.25. This was necessary when
using WPA for analysis of both fBm-type profiles and the ‘enzyme walks’. For higher-
order wavelet filters such as d4, d6, and d8 the cut-offE was equivalent to includingall
non-negative coefficient energies.

6. Finite-size effects

We review a series of practical studies which have experimentally determined the Hurst
exponent on relatively short signal lengths and comment briefly on these published results
in the context of theWPA data presented here. It is well known that the global self-affine
exponent converges towards a more stable value for long(L > 1024) 1D signals [13]. These
authors emphasize that no one method provides robust estimation ofH across the possible
range (H ∈ 0, 1), and that generally profiles with finite length (especiallyL < 1024)
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are difficult to empirically measure. However, notwithstanding this finite-size effect, if
a restricted range of self-affine exponents is observed in practice then the intrinsic errors
associated with a specific algorithm can be diminished by large statistical sampling and
the use of multiple methods to confirm the observedH estimate [13]. In another recent
experiment [32], the discrete wavelet transform using the Haar basis was applied to 256
realizations of fBm increments ofL = 128. Summary data were only given for simulations
using L = 512 and our results usingWPA (see table 1) are in good agreement with the
accuracy across the range of synthetic fBm-type profiles examined in both experiments.

Table 1. Global Hurst exponent results for each of the different methods tested against 15
synthetic fBm-type profiles and 15 stochastic ‘enzyme walks’ for laccase.

d2
Self-affine Data are the ‘Haar ‘Mean’
1D profiles means of 15 basis’ d4 d6 d8 Global 2nd local 2nd
TheoreticalH replicates wavelet wavelet wavelet waveletRMS vs L moment moment

fBm-type
03 Mean 0.245 0.290 0.319 0.268 0.315 0.284 0.297

Std. dev± 0.066 0.062 0.060 0.058 0.044 0.070 0.072
r2 0.784 0.812 0.786 0.765 0.961
Std. dev± 0.067 0.056 0.045 0.052 0.064

0.5 Mean 0.418 0.486 0.525 0.516 0.443 0.518 0.516
Std. dev± 0.094 0.070 0.034 0.066 0.026 0.062 0.063
r2 0.836 0.861 0.840 0.820 0.992
Std. dev± 0.027 0.030 0.042 0.036 0.012

0.7 Mean 0.645 0.746 0.717 0.675 0.652 0.750 0.710
Std. dev± 0.048 0.066 0.048 0.065 0.051 0.068 0.090
r2 0.888 0.905 0.895 0.886 0.998
Std.dev± 0.020 0.027 0.029 0.026 0.001

‘enzyme walk’ Mean 0.362 0.375 0.370 0.362 0.406 0.321 0.275
ALL Std. dev± 0.081 0.063 0.066 0.064 0.017 0.032 0.017

r2 0.498 0.728 0.777 0.768 0.982
Std. dev± 0.169 0.117 0.060 0.054 0.007

‘enzyme walk’ Mean 0.354 0.367 0.345 0.332 0.367 0.245 0.257
HALF Std. dev± 0.108 0.082 0.081 0.074 0.041 0.078 0.040
Double r2 0.466 0.666 0.768 0.772 0.965
magnification Std. dev± 0.200 0.176 0.044 0.013 0.017

Two relevant studies have used a series of line profiles to measure self-affine scaling
properties in2D bone x-rays using image analysis. The first [43] used the power spectrum
approach on1D lines of L = 200. The data for1D profiles are in good agreement with
those obtained by performing2D power spectral analysis of the same test images. The
second study [44] used a series of1D lines of L = 100 to estimate the Hurst exponent
of radiological images of bone density. This last study employed imaging hardware with
512× 512 pixel resolution. It appears that provided one examines many realizations for a
given image, short profiles can be experimentally characterized with a global Hurst exponent
to index roughness. Notably, in a recent time series investigation, the mean-square displace-
ment function was measured for sequences ofL = 90 and 240 with apparent successful
results [45]. Finally, the growth of rough surfaces with random deposition and surface
diffusion was explored over various lengths, and the data suggest [46] good agreement with
scaling convergence observed betweenL = 120 and 450.
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7. Results and discussion

For our simulations, fifteen samples of fBm(L = 512) were created by iterated midpoint dis-
placement for each of the following exponents:H = 0.3, H = 0.5 andH = 0.7. TheRMS

versusL, global second moment, local second moment andWPA algorithms were first tested
on the simulated fBm signals. The resulting mean, standard deviation and coefficient of vari-
ation and corresponding standard deviation estimated by each method are given in table 1.
This table also shows the estimatedH exponent when theWPA algorithm was implemented
with the Haar (d2) basis and then with higher-order Daubechies filters—d4, d6 and d8.

For the synthetic profiles ofL = 512, the Haar wavelet (d2) consistently underestimates
the Hurst exponent although the application of higher-order wavelet filters which have a
greater number of vanishing moments appears to increase the accuracy of the returned
exponent. This is consistent with [29], although it is important to point out the following
possible caveat on this. Reference [32] applied theDWT to estimate1D fBm signals with d4
and d16 filters. It was shown that higher-order wavelet filters can be successfully applied
to estimate spatial correlations. However, higher order (i.e. d16) did not always result in
faster decay of coefficient energy. In fact, excessively high order often showed a variance
bias by excluding fine feature details. Further work withWPA will need to address the
issue of wavelet filter order on accuracy. Considering the four wavelet filters together,
for increasingly smooth signals (i.e.H = 0.5 andH = 0.7) the least-squares regression
line more closely follows the power-law scaling proposed in equation (9) compared with
both the meanr2 value and the corresponding standard deviation of the regression for the
antipersistentH = 0.3 signal. Specifically forH = 0.3, the mean and standard deviation
for the r2 estimate of the straight line regression fit was 0.787± 0.055. ForH = 0.5
and H = 0.7 the mean and standard deviation were 0.839± 0.034 and 0.894± 0.026,
respectively. This emphasizes the underlying irregularity of antipersistent functions and the
difficulty of fitting a straight line to plots of coefficient energy magnitude versus position. It
should be emphasized that such low meanr2 values are not uncommon during computation
of the Hurst exponent for self-affine functions using the alternative fast Fourier transform
method where a typical mean value ofr2 was 0.781 [18]. The wavelet packet method is
also a position–frequency method like theFFT, and the subjectively lowr2 value reflects
local fluctuations in position-frequency wavelet coefficient energies. TheRMS versusL

method performs well on the antipersistent signals, but is less efficient at resolving random
and smooth signal fluctuations within the context of Hurst analysis. The global second
moment approach also displays similar accuracy to theRMS versusL method. Notably,
the mean standard deviations for the mean Hurst exponent values computed with wavelet
filters d2–d8 are comparable to the error associated with calculation of the exponent with
the global second moment. The local second moment approach was the only method in
this study which offered computation of local fluctuations of the Hurst exponent. This is
achieved by examining relative expectation of products of successive increments in windows
containing different numbers of data points. This partition was accomplished by specifying
the number of lags which for signals ofL = 512 should be no longer than one quarter of
L [36]. We averaged the individualH values for all lags to give mean values for each
profile. The reported values are then the means of the fifteen different profiles. This method
achieved very good accuracy, although the standard deviation for the means for eachH

set was higher than for the global second moment method. This was expected since the
correlation at large lags tends to deviate. We next examined the mean values for eachH

set usingWPA. We advocate not using the Haar basis (d2) since it does not have sufficient
smoothness properties and is discontinuous. However, the Daubechies 4, 6 and 8 wavelets
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offer increasing smoothness and are continuous functions. In light of this we now consider
the mean computedH exponent for these three latter wavelets only. Against the synthetic
H = 0.3 profiles, theWPA method returned a predicted mean value of 0.292± 0.060, and
against theH = 0.5 and 0.7 cases, respective estimates were 0.509±0.056 and 0.713±0.060.
TheWPA method using several higher-order wavelet filters (compared against the Haar basis)
provides a robust method for estimating the global Hurst exponent of homogeneous functions
and has equivalent accuracy to the mean value calculated from the local second moment
approach. It was clear that the d6 wavelet returned a predicted meanH value which was
closest to theory. Within the scope of the various methods considered here, the global second
moment approach was the next most accurate, followed by theRMS versusL statistic.

We now consider the accuracy of the various methods for predicting the Hurst exponent
for the stochastic ‘enzyme walk’ profiles of short length (L = 256). One image was analysed
at two different magnifications: the whole colony (abbreviated byALL )—figure 1(b)–(c),
(e), (f ) and an enlarged view of half the colony (abbreviated byHALF)—figure 1(d) and
1(g). Figure 6(a) presents a sample ‘enzyme walk’ profile forALL . The corresponding
best basis computed from the wavelet packet table is shown below in (b). This plots the
location of the best basis block coefficients using the minimum entropy algorithm and the d4
analysing wavelet. The best basis coefficients which identify important scaling contributions
at different scaling resolutions can be positionally compared with the input signal sequence
shown in (a). A sample ‘enzyme walk’ is also shown forHALF (c) and its corresponding
frequency partition identifying the best basis for the d4 wavelet decomposition(d).

Unlike our application of the various methods on theoretically ‘ideal’ synthetic profiles,
we do not have a benchmark to compare the predictedH values against. Nevertheless,
the four methods suggest the following interpretation. Interestingly, the Haar wavelet
predicts an exponent which is very similar to those calculated using higher-order wavelets
for both ALL andHALF. Based on the results obtained with the Haar wavelet applied to the
range of deterministic profiles, we shall not include the returned results from this wavelet
in the discussion. Briefly we note the fact that similar meanH results were obtained
for each wavelet, reinforcing the fact thatWPA is capable of resolving stochastic profile
irregularity even using a poorly localized bases such as the Haar wavelet. The fact that
the Haar wavelet performs poorly on the deterministic profiles might be a function of
the mechanics of synthetic profile generation using the midpoint displacement method.
Considering only the combined meanH values for the Daubechies 4, 6 and 8 wavelets we
derive forALL : H = 0.369± 0.064, r2 = 0.758± 0.077 and forHALF, H = 0.348± 0.079,
r2 = 0.736±0.078. Notably, theH value forHALF is slightly smaller (indicating more local
irregularity) than forALL . This is most likely due to greater resolution of nearest-neighbour
enzyme concentration differences. Magnification forHALF allowed the measurement of the
spatial fluctuation behaviour from the origin of growth (the plug) to the edge of the colony.
This subset region therefore comprises one half of the colony and emphasizes the positional
commitment of local hyphal regions to the maintenance of radial symmetry during enzyme
transport. In contrast to the results obtained against the deterministic profiles, the average
local second moment method performs poorly on short signals(L = 256). It is likely that
both second moment methods underestimate theH value and in fact amplify the detection
of locally irregular regions which cannot be averaged out with larger lags due to finite-size
effects. TheRMS versusL method performs well for short antipersistentH values and the
use of this method to characterize the stochastic ‘enzyme walks’ provides empirical support
that the predictedH values measured withWPA are accurate.

Finite-size effects contribute to the deviation from linearity, producing a ‘tail’ for
the size distribution function. This ‘tail’ was similar in appearance to that shown in
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figure 5(b), although it was found that exclusion of the ‘tail’ decreased the accuracy of
the affine exponent measurement, compared against deterministic signals. This emphasizes
the importance of ‘microscopic’ variable contributions, quantified from the wavelet packet
best basis approach. The respective mean slope exponents showed comparable accuracy
against alternative methods for Hurst exponent computation, although we suggest that
several wavelet functions (having a spectrum of vanishing moments) should be used to
achieve better or more efficient frequency resolution as part of the analytical strategy for
WPA of experimental signals.

We comment briefly on the wavelet transform modulus-maxima method used by
Arnéodoet al (see, for example, [3–7]). This method computes ‘local’ scaling behaviour
of fractal 1D and 2D signals. In contrast, theWPA approach introduced here was intended
to characterize ‘global’ scaling behaviour. However, the best basis signal approximation
containsall the relevant information needed to examine local correlation trends. We can
extend the application ofWPA using equation (9) to operate on lagged subsets of the best
basis to estimate local positional correlations. AWPA method is developed to address this
important issue, for multifractal and ‘local’ signal characterization in appendix B.

8. Conclusion

We have established a scaling relation for signal analysis using a wavelet packet best basis.
This enables computation of the global monofractal Hurst exponent from the decay rate of
coefficient magnitudes using different wavelet filter functions. The robustness and accuracy
of this approach compares favourably with alternative methods for detection and measure-
ment of the affine exponent for signals of different length. This has been illustrated using
both deterministic fBm-type profiles, and those derived from a stochastic, biological system.

This paper has introduced the application ofWPA to the analysis of short (i) simulated
fBm-type 1D profiles and (ii) stochastic1D profiles which developed in a biological enzyme
system where visualization of the discrete spatial locations of local enzyme concentration
was a function of a chemical deposition process. We found that for ‘enzyme walk’ profiles,
the decay rate of theWPA best basis coefficient energy magnitude (using wavelets d4, d6,
d8) in a sorted vector scales with a meanH exponent of 0.369±0.064 at low magnification
(ALL ). By doubling the magnification (increasing system size) and examining the scaling
over one half of the colony (HALF) to explore the influence of radial symmetry on the
enzyme distribution, we find a meanH exponent of 0.348± 0.079. Thus we conclude
that macroscopic patterns of laccase enzyme (revealed through chemical deposition) display
asymptotic antipersistent self-affine scaling with the exponentH between 0.348 and 0.369.
The data obtained by theRMS versusL method are in close agreement with this conclusion,
showing a meanH exponent forALL of 0.406 ± 0.017 and forHALF, 0.367 ± 0.041.
We conclude that results obtained by both the second moment techniques for the stochastic
enzyme profiles(L = 256) with a lag of 64 led to underestimations of the scaling correlation
due to finite-size effects and internal biases of the estimation algorithm.

A theoretical treatment of the implications and potential adaptive advantage of an
antipersistent ‘enzyme walk’ in fungi will be reported elsewhere. We are currently extending
the application ofWPA to cover 2D fBm-type and fractal images. These results and their
analysis suggest that the ‘microscopic’ energetic formalism approached through wavelet
packet dynamics may be valid for investigating the homogeneous resolution-scale behaviour
for a broad class of fractal, noisy and chaotic signals.
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Appendix A. Laccase enzyme detection

The reagent (total volume 100 mL) contained 100 mM sodium tartrate (Sigma) at pH 5.0
and 1.0 mM 2, 6-dimethoxyphenol (Aldrich Chemical Co). The reagent mixture used to
detect laccase enzyme [20] was present in excess and was deposited via capillary (1.85 mL)
onto the surface of the fungal hyphae from underneath [19]. The oxidation reaction of
the methoxy-substituted monophenol, 2, 6-dimethoxyphenol is shown in figure A1. Several
colonies were grown on 0.2µm pore-size polycarbonate membrane filters overlaid on malt
extract agar (Oxoid) following previously described methods [37, 18–19]. Each whole
colony was reacted with this reagent at time zero, at 37◦C and periodic image analysis
was performed after 120 minutes. Laccase is secreted extracellularly and may be found
bound to a mucilaginous structure called the hyphal sheath. This limits free diffusion and
is an adaptive advantage aimed towards selective enzyme desorption when the hyphal cell
encounters a suitable nutrient environment requiring this enzyme. It is expected that local
diffusion of the reagent towards regions of exo-enzyme concentration (possibly bound to
the hyphal sheath) generates a non-trivial correlation between different sized patches of
reactants and products.

Figure A1. Oxidation of 2, 6-dimethoxyphenol
to an orange/brown dimer, 2, 5, 2′, 5′-
tetramethoxy-p-dibenzoquinone to measure lac-
case activity [20].

Appendix B. Computation of ‘local’ multifractal scaling

We approach the question of computing a local Hurst exponent,Hlocal usingWPA in the fol-
lowing way. The best basis coefficient listing in raw format can be unsorted or sorted. For
the unsorted coefficient list, the coefficients in each node are listed innatural, Paley order
[9, 10] which is in the order in which they were generated. By looking at the wavelet packet
table (see, for example, figure 6(b) or (d)) one can see that in moving from left to right across
the signal space, blocks of nodes are highlighted in black, which completely tile the position–
frequency plane. To estimate local exponents, one can pre-process these naturally ordered
best basis coefficients to quantify scaling behaviour in windowed regions. The global
monofractal Hurst exponent was computed usingall coefficient data with a windowed lag
equal to one. In contrast, the degree of correlation between best basis coefficients separated
by different lags can be estimated as follows. For local exponents,Hlocal one takes the list-
ing of naturally ordered best basis coefficients and retains all coefficients at different lagged
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Table B1. Multifractal analysis of a sample fBm-type1D signal with theoreticalH = 0.7,
L = 512. The Hurst exponent is shown for different lags.

lag Hurst exponent r2

1 Hglobal 0.725 0.871
2 Hlocal 0.543 0.789
3 0.763 0.908
4 0.643 0.857
5 0.706 0.891
6 0.637 0.855
7 0.907 0.771
8 0.351 0.902
9 0.660 0.920

10 0.493 0.954
11 0.570 0.955
12 0.618 0.932
13 0.557 0.834
14 0.677 0.634
15 0.813 0.916
16 0.357 0.930

positions, e.g. 2, 3, 4,. . . etc. A second vector listing of coefficient index positions (equa-
tion (7)) at each lag is also retained. One then sorts the best basis coefficients for each lag
versus the lagged coefficient index positions,N , in descending order of magnitude follow-
ing equation (6). The local scaling exponent for each lag,Hlocal can then be estimated from
equation (9). We illustrate this process on a synthetic1D fBm-type signal where the theoret-
ical Hglobal = 0.7 andL = 512 (table B1). The signal was decomposed with the d4 wavelet.

The meanH for lags 1–16 usingWPA was 0.626 ± 0.149, r2 = 0.870. This
result can be compared with the local second-moment technique which returned a mean
H = 0.629± 0.254, r2 = na for a defined lag= 64 according to the method of [36].
Future work will explore the application ofWPA to estimate multifractal1D and 2D

signals approached through computation of local scaling behaviour in addition to global
characterization.
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